The Square Kilometre Array

Introduction

Paul Alexander

Leader of the Science Data Processor
UK Science Director SKA Organisation
What is the Square Kilometre Array (SKA)

• Next Generation radio telescope – compared to best current instruments it is ...
What is the Square Kilometre Array (SKA)

- Next Generation radio telescope – compared to best current instruments it is ...
 - ~ 100 times sensitivity
 - $\sim 10^6$ times faster imaging the sky
- More than 5 square km of collecting area on sizes 3000km
What is the Square Kilometre Array (SKA)

- Next Generation radio telescope – compared to best current instruments it is ...
 - ~100 times sensitivity
 - ~ 10^6 times faster imaging the sky
 - More than 5 square km of collecting area on sizes 3000km

- Will address some of the key problems of astrophysics and cosmology (and physics)

- Builds on techniques developed here in the UK
 - It is an interferometer

- Uses innovative technologies...
 - Major ICT project
 - Need performance at low unit cost
Mid frequency array and mid-frequency aperture array
Low-frequency aperture array and survey array
Phased Aperture array for 40 – 650 MHz
Phased Aperture array: 3 million antennas
Specifications SKA2

• Next generation cm-wave radio interferometer
 • 50 MHz – 24GHz continuous frequency coverage
 • Full polarization coverage with > 32000 configurable spectral channels
• Sensitivity ~ 50 times the JVLA
 • > 1 GHz A/T ~ 10000 m²K⁻¹ → 0.35 μJy in 1 min at 1.4 GHz
 • 120 MHz A/T ~ 4000 m²K⁻¹ → ~ 1 μJy in 1 min at 120 GHz
• Resolution up to 10 mas at 1.4 GHz
 • Baselines to 3000 km
• Excellent surface brightness sensitivity
 • Very compact core
 ➢ 20 % of collector within 1 km diameter core
 ➢ 50 % of collector within 5 km diameter core
• Very high survey speed
 • ~ 200 sq-degrees FoV below 1 GHz
 • 1 sq-degree at 1.4 GHz or 20 sq-degrees with Phased Array Feeds
SKA Key Science Drivers

ORIGINS
- Neutral hydrogen in the universe from the Epoch of Re-ionisation to now
 - When did the first stars and galaxies form?
 - How did galaxies evolve?
 - Role of Active Galactic Nuclei
 - Dark Energy, Dark Matter
- Cradle of Life

FUNDAMENTAL FORCES
- Pulsars, General Relativity & gravitational waves
- Origin & evolution of cosmic magnetism

TRANSIENTS (NEW PHENOMENA)
SKA: A Leading Big Data Challenge for 2020

Antennas

Digital Signal Processing (DSP)

To Process is HPC
2020: 100 PBytes/day
2028: 10,000 PBytes/day
Over 10’s to 1000’s kms

Transfer antennas to DSP
2020: 20,000 PBytes/day
2028: 200,000 PBytes/day
Over 10’s to 1000’s kms

HPC Processing
2020: 300 PFlop
2028: 30 EFlop

High Performance Computing Facility (HPC)
Major Advances

• Major international review March 2011 – green light to go ahead with Detailed Design (90m Euros – 120m Euros available)

• SKA is now a legal entity (December 2011), company limited by guarantee [UK, NL, Aus, NZ, RSA, It, Canada, China, Sweden, Germany, India]

• Global HQ in UK

• Site decision and decision on SKA structure

• UK commitment:
 – £19m to design
 – £100m to SKA1 construction (18.5% of total cost)
SKA Implementation
SKA Phase 1 Implementation

SKA1_Mid_Dish

SKA1_Survey

SKA1_Low
• Formal inclusion of precursors and use of infrastructure leads to implementation options which offer scientific advantage

<table>
<thead>
<tr>
<th></th>
<th>RSA</th>
<th>ANZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precursor</td>
<td>MeerKAT</td>
<td>ASKAP</td>
</tr>
<tr>
<td>A/T</td>
<td>m²/K</td>
<td>260</td>
</tr>
<tr>
<td>Survey speed</td>
<td>m⁴/K²/deg²</td>
<td>5 x 10⁴</td>
</tr>
<tr>
<td>Power Installed</td>
<td>MVA</td>
<td>7 + 3.75</td>
</tr>
<tr>
<td>Data lit</td>
<td>Gb/s</td>
<td>10</td>
</tr>
<tr>
<td>Additional data</td>
<td>k€/ 10 Gb/s</td>
<td>280</td>
</tr>
<tr>
<td>Power recurrent cost per MW</td>
<td>M€/yr</td>
<td>5 - 10</td>
</tr>
</tbody>
</table>

• SKA1 Baseline has SKA1_Low and SKA1_Dish consisting of 250 15m SKA dishes
• Can achieve SKA Phase 1 sensitivity requirement utilising MeerKAT + 190 SKA Dishes
• Incorporating ASKAP + 60 SKA Dishes equipped with Phased Array Feeds gives a enhanced science return over baseline
• SKA1_Low has 250,000 dual-polarization antennas
SKA1 Redefining Radio Astronomy

<table>
<thead>
<tr>
<th></th>
<th>JVLA</th>
<th>MeerKAT</th>
<th>SKA1-mid</th>
<th>ASKAP</th>
<th>SKA1-survey</th>
<th>LOFAR-NL</th>
<th>SKA1-low</th>
</tr>
</thead>
<tbody>
<tr>
<td>A${eff}$/T${sys}$</td>
<td>m2/K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey FoV</td>
<td>deg2</td>
<td>0.14</td>
<td>0.48</td>
<td>0.39</td>
<td>30</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>Survey Speed FoM</td>
<td>deg2 m4/K$^{-2}$</td>
<td>0.98×104</td>
<td>5.0×104</td>
<td>1.0×106</td>
<td>1.3×105</td>
<td>2.8×106</td>
<td>2.2×104</td>
</tr>
<tr>
<td>Resolution</td>
<td>arcsec</td>
<td>1.4</td>
<td>11</td>
<td>0.22</td>
<td>7</td>
<td>0.9</td>
<td>5</td>
</tr>
</tbody>
</table>

A_{eff}/T_{sys}:

6 x JVLA
100 x JVLA

Survey Speed:

1 x JVLA
22 x JVLA
550 x LOFAR
SKA Timeline

- **2020**: Early science SKA\(_1\)
 - **2022**: Full Operations SKA\(_1\)

- **2022-2028**: Construction of Full SKA, SKA\(_2\)
 - €1.5B

- **2017-2022**: 10% SKA construction, SKA\(_1\)
 - €650M

- **2012**: Site selection

- **2013 - 2016**: Pre-Construction: 3 yr Detailed design and production Readiness
 - €90M

- **2008 - 2012**: System design and refinement of specification

- **2000 - 2007**: Initial concepts stage

- **1995 - 2000**: Preliminary ideas and R&D
Work Packages in the PEP

1. System
2. Science
3. Maintenance and support /Operations Plan
4. Site preparation
5. Dishes
6. Aperture arrays
7. Signal transport
8. Data networks
9. Signal processing
10. Science Data Processor
11. Monitor and Control
12. Power
Work Packages in the PEP

1. System
2. Science
3. Maintenance and support /Operations Plan
4. Site preparation
5. Dishes

<table>
<thead>
<tr>
<th>Work Package</th>
<th>Leader(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Aperture arrays</td>
<td>ASTRON (lead), UK, Itals, ICRAR (Aus)</td>
</tr>
<tr>
<td>7. Signal transport</td>
<td>UK (lead)</td>
</tr>
<tr>
<td>8. Data networks</td>
<td>UK (lead)</td>
</tr>
<tr>
<td>9. Signal processing</td>
<td>Canada (lead) … UK</td>
</tr>
<tr>
<td>10. Science Data Processor</td>
<td>UK (lead), AU (CSIRO…), NL (ASTRON…)</td>
</tr>
<tr>
<td>11. Monitor and Control</td>
<td>South Africa SKA, Industry (Intel, IBM…)</td>
</tr>
<tr>
<td>12. Power</td>
<td></td>
</tr>
</tbody>
</table>
SKA₁ & SKA₂ will have much higher sensitivity & survey speed than existing instruments.
Nominal SKA1 Sensitivity

<table>
<thead>
<tr>
<th>Telescope</th>
<th>Band (GHz)</th>
<th>Frequency (GHz)</th>
<th>Bandwidth (MHz)</th>
<th>Integration Time (s)</th>
<th>FoV (deg^2)</th>
<th>Sensitivity in 12 hrs (mJy)</th>
<th>Sensitivity in 1000 hrs (micro Jy)</th>
<th>Sensitivity in 1000 hrs (nJy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid</td>
<td>0.35 - 1.05</td>
<td>0.7</td>
<td>500</td>
<td>1</td>
<td>1.4</td>
<td>0.10</td>
<td>0.47</td>
<td>51.8</td>
</tr>
<tr>
<td></td>
<td>0.95 - 1.76</td>
<td>1.4</td>
<td>500</td>
<td>1</td>
<td>0.375</td>
<td>0.06</td>
<td>0.29</td>
<td>31.4</td>
</tr>
<tr>
<td></td>
<td>1.65 - 3.05</td>
<td>2.4</td>
<td>1000</td>
<td>1</td>
<td>0.125</td>
<td>0.05</td>
<td>0.25</td>
<td>27.5</td>
</tr>
<tr>
<td>Low</td>
<td>50 - 450</td>
<td>50</td>
<td>20</td>
<td>1</td>
<td>39</td>
<td>3.53</td>
<td>17</td>
<td>1862</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>50</td>
<td>1</td>
<td>8</td>
<td>0.32</td>
<td>1.5</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>50</td>
<td>1</td>
<td>3.8</td>
<td>0.29</td>
<td>1.3</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>100</td>
<td>1</td>
<td>2</td>
<td>0.19</td>
<td>0.93</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>100</td>
<td>1</td>
<td>1.1</td>
<td>0.19</td>
<td>0.89</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>Survey</td>
<td>0.35 - 0.9</td>
<td>0.63</td>
<td>500</td>
<td>1</td>
<td>63</td>
<td>0.56</td>
<td>2.7</td>
<td>296</td>
</tr>
<tr>
<td></td>
<td>0.65 - 1.67</td>
<td>1.2</td>
<td>500</td>
<td>1</td>
<td>18</td>
<td>0.25</td>
<td>1.2</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>1.5 - 4.0</td>
<td>2.8</td>
<td>1000</td>
<td>1</td>
<td>3.25</td>
<td>0.32</td>
<td>1.5</td>
<td>170</td>
</tr>
</tbody>
</table>
SKA Board has decided on cot-capped SKA1 – 650m Euros
Current estimates from design consortia exceed this for complete telescope
Design work to reduce costs ongoing, but expect to need to rebaseline SKA1
Science Review Panel: SWG chairs + Board nominations