CERN, the European Organization for Nuclear Research, was founded in 1954. It has become a prime example of international collaboration, with currently 20 Member States. It is the biggest particle physics laboratory in the world, and sits astride the Franco-Swiss border near Geneva.

Seeking answers to questions about the Universe
What is it made of?
How did it come to be the way it is?

Uniting nearly 10,000 scientists from more than 110 countries, CERN is a laboratory for the world

Advancing the frontiers of technology and engineering

Training the young scientists and engineers who will be the experts of tomorrow

CERN's research at the frontiers of science also pushes back the boundaries of technology. The results, in areas from computing to materials science, can have much broader applications.

CERN delivers a variety of beams including high-energy muons to study the structure of the proton, heavy ions to form new states of matter, and radioactive ion beams to observe exotic nuclei.

CERN also produces beams of antiparticles, which are the constituents of antimatter — a kind of "mirror image" of ordinary matter. There are now several experiments at CERN making and studying antimatter.

Beams of neutrinos have been important throughout the history of CERN. The latest venture is to send a beam of these very weakly interacting particles under the Earth's surface to the Gran Sasso Laboratory in Italy, 730 km away.

CERN's research at the frontiers of science also pushes back the boundaries of technology. The results, in areas from computing to materials science, can have much broader applications.

CERN also produces beams of antiparticles, which are the constituents of antimatter — a kind of "mirror image" of ordinary matter. There are now several experiments at CERN making and studying antimatter.

Beams of neutrinos have been important throughout the history of CERN. The latest venture is to send a beam of these very weakly interacting particles under the Earth's surface to the Gran Sasso Laboratory in Italy, 730 km away.

CERN's research at the frontiers of science also pushes back the boundaries of technology. The results, in areas from computing to materials science, can have much broader applications.
CERN is a laboratory where scientists unite to study the building blocks of matter and the forces that hold them together.

Physicists at CERN explore matter using machines called particle accelerators. These accelerate beams of particles and smash them into each other, or into other targets, to create high energy conditions similar to those in the first instants of the Universe.

Accelerators use powerful electric fields to give energy to beams of particles, and magnetic fields to guide the beams through the machines. The bigger machines are circular and the magnetic fields are used to steer the particles round and round a ring, so that they collect energy with each lap.

CERN is home to the world’s biggest and most powerful particle accelerator, the Large Hadron Collider, or LHC. This machine is installed in a tunnel 27 km in circumference which housed a previous machine, the Large Electron Positron collider, LEP. By studying collisions at higher energies than ever before, physicists working with the LHC will make further progress in understanding the mysteries of how our Universe is made and how it came to be.

Detectors record what happens when the particles collide. The energetic collisions produce many new particles, as energy turns into matter in accordance with Einstein’s equation, \(E=mc^2 \), where \(E \) stands for energy, \(m \) for mass and \(c \) is the speed of light.

The different layers of a detector measure different properties of the particles produced in collisions. Tracking devices reveal the paths of the particles as they fly away from the collision. Other layers, called calorimeters, measure the energy of the particles. A magnet built into the detector bends the paths of electrically charged particles and helps in identifying the particle types.

Further kinds of elementary particles exist in nature, for example in cosmic rays. These are invisible showers of particles created when energetic particles from outer space crash into the Earth’s atmosphere.

In all there are 12 types of particle that form two groups – quarks and leptons (electron-like particles).

The basic building blocks are tiny particles, much smaller even than atoms. Four kinds of these elementary particles are needed to account for all the matter we see in the world around us. These are the up-quark, the down-quark, the electron and the electron-neutrino.

Different forces act between the particles. The strong force, the electromagnetic force and gravity glue the particles together into bigger structures, from the invisibly small atoms to huge galaxies of millions of stars. The weak force changes particles and atoms from one type to another, as in reactions that fuel the sun.

The forces are themselves carried by particles that are different from the particles of matter. Force-carrying particles have only a fleeting existence as they carry information from one matter particle to another.
CERN is a laboratory where scientists unite to study the building blocks of matter and the forces that hold them together.

Physicists at CERN explore matter using machines called particle accelerators. These accelerate beams of particles and smash them into each other, or into other targets, to create high energy conditions similar to those in the first instants of the Universe.

Accelerators use powerful electric fields to give energy to beams of particles, and magnetic fields to guide the beams through the machines. The bigger machines are circular and the magnetic fields are used to steer the particles round and round a ring, so that they collect energy with each lap.

CERN is home to the world’s biggest and most powerful particle accelerator, the Large Hadron Collider, or LHC. This machine is installed in a tunnel 27 km in circumference which housed a previous machine, the Large Electron Positron collider, LEP. By studying collisions at higher energies than ever before, physicists working with the LHC will make further progress in understanding the mysteries of how our Universe is made and how it came to be.

Detectors record what happens when the particles collide. The energetic collisions produce many new particles, as energy turns into matter in accordance with Einstein’s equation, \(E=mc^2 \), where \(E \) stands for energy, \(m \) for mass and \(c \) is the speed of light.

The different layers of a detector measure different properties of the particles produced in collisions. Tracking devices reveal the paths of the particles as they fly away from the collision. Other layers, called calorimeters, measure the energy of the particles. A magnet built into the detector bends the paths of electrically charged particles and helps in identifying the particle types.

The basic building blocks are tiny particles, much smaller even than atoms. Four kinds of these elementary particles are needed to account for all the matter we see in the world around us. These are the up-quark, the down-quark, the electron and the electron-neutrino.

In all there are 12 types of particle that form two groups – quarks and leptons (electron-like particles).

Further kinds of elementary particle exist in nature, for example in cosmic rays. These are invisible showers of particles created when energetic particles from outer space crash into the Earth’s atmosphere.

Different forces act between the particles. The strong force, the electromagnetic force and gravity glue the particles together into bigger structures, from the invisibly small atoms to huge galaxies of millions of stars. The weak force changes particles and atoms from one type to another, as in reactions that fuel the sun.

The forces are themselves carried by particles that are different from the particles of matter. Force-carrying particles have only a fleeting existence as they carry information from one matter particle to another.

The different kinds of these tiny fundamental particles and their accompanying forces are shown in the diagram.
CERN, the European Organization for Nuclear Research, was founded in 1954. It has become a prime example of international collaboration, with currently 20 Member States. It is the biggest particle physics laboratory in the world, and sits astride the Franco-Swiss border near Geneva.

CERN is the world’s largest centre for research in particle physics, with several interlinked accelerators that provide many kinds of particle for many different experiments.