2012: The Synergetic Air-Breathing Rocket Engine (SABRE) test rig is completed and achieves a supersonic speed. The UKgovernment awards £1.2bn to develop this engine, which could potentially lead to greatly increased fuel efficiency.

2013: The UK government announces plans to establish a national space agency, the UK Space Agency (UKSA), and agrees a £1.2bn package for research and development for the next 10 years.

2014: Launch of ESA's Envisat satellite, which is equipped with a magnetometer to monitor space weather. It is the first satellite to demonstrate the potential of using remote sensing data to study the Earth's environment.

2015: ESA uses its Earth observation satellites to monitor climate change, providing information on the impact of human activities on the environment, particularly at a global scale.

2016: Launch of the European Space Agency's (ESA) Europe's flagship mission, the Euclid project, to map the large-scale structure of the Universe and test the nature of dark energy.

2017: Launch of the ESA's GOCE satellite, which is designed to measure the Earth's gravitational field with unprecedented precision. The data from this mission is used to improve our understanding of the Earth's interior and to enhance our knowledge of the physics of the Earth.

2018: Launch of the ESA's Gaia satellite, which is designed to provide a comprehensive survey of the Milky Way galaxy. The data from this mission is used to improve our understanding of the structure and dynamics of the galaxy.

2019: Launch of the ESA's BepiColombo mission to Mercury, which includes a magnetic field mapper, a gravity field mapper, and a solar wind probe. The data from this mission is used to improve our understanding of the solar system and to study the properties of Mercury.

2020: Launch of the ESA's Solar Orbiter mission to study the Sun and its influence on the solar system. The data from this mission is used to improve our understanding of the Sun and its effects on the Earth and other planets.

2021: Launch of the ESA's Cheops satellite, which is designed to study the variability of the Earth's rotation. The data from this mission is used to improve our understanding of the Earth's dynamics and to study the effects of climate change.

2022: Launch of the ESA's Enzo satellite, which is designed to study the magnetic field of the Earth and to monitor space weather. The data from this mission is used to improve our understanding of the Earth's magnetic field and to study the effects of space weather on the Earth.

2023: Launch of the ESA's Hera satellite, which is designed to study the dynamics of the Earth's interior. The data from this mission is used to improve our understanding of the Earth's dynamics and to study the effects of climate change.

2024: Launch of the ESA's Gaia-PPM mission, which is designed to provide a detailed map of the positions and distances of stars in the Milky Way galaxy. The data from this mission is used to improve our understanding of the structure and dynamics of the galaxy.

2025: Launch of the ESA's Jupiter Icy Moons Mission (JIMM), which is designed to study the ice giants of the outer solar system. The data from this mission is used to improve our understanding of the properties of the ice giants and to study the effects of climate change.

2026: Launch of the ESA's Hera satellite, which is designed to study the dynamics of the Earth's interior. The data from this mission is used to improve our understanding of the Earth's dynamics and to study the effects of climate change.

2027: Launch of the ESA's Gaia-PPM mission, which is designed to provide a detailed map of the positions and distances of stars in the Milky Way galaxy. The data from this mission is used to improve our understanding of the structure and dynamics of the galaxy.

2028: Launch of the ESA's Jupiter Icy Moons Mission (JIMM), which is designed to study the ice giants of the outer solar system. The data from this mission is used to improve our understanding of the properties of the ice giants and to study the effects of climate change.

2029: Launch of the ESA's Hera satellite, which is designed to study the dynamics of the Earth's interior. The data from this mission is used to improve our understanding of the Earth's dynamics and to study the effects of climate change.

2030: Launch of the ESA's Gaia-PPM mission, which is designed to provide a detailed map of the positions and distances of stars in the Milky Way galaxy. The data from this mission is used to improve our understanding of the structure and dynamics of the galaxy.

2031: Launch of the ESA's Jupiter Icy Moons Mission (JIMM), which is designed to study the ice giants of the outer solar system. The data from this mission is used to improve our understanding of the properties of the ice giants and to study the effects of climate change.

2032: Launch of the ESA's Hera satellite, which is designed to study the dynamics of the Earth's interior. The data from this mission is used to improve our understanding of the Earth's dynamics and to study the effects of climate change.

2033: Launch of the ESA's Gaia-PPM mission, which is designed to provide a detailed map of the positions and distances of stars in the Milky Way galaxy. The data from this mission is used to improve our understanding of the structure and dynamics of the galaxy.

2034: Launch of the ESA's Jupiter Icy Moons Mission (JIMM), which is designed to study the ice giants of the outer solar system. The data from this mission is used to improve our understanding of the properties of the ice giants and to study the effects of climate change.

2035: Launch of the ESA's Hera satellite, which is designed to study the dynamics of the Earth's interior. The data from this mission is used to improve our understanding of the Earth's dynamics and to study the effects of climate change.

2036: Launch of the ESA's Gaia-PPM mission, which is designed to provide a detailed map of the positions and distances of stars in the Milky Way galaxy. The data from this mission is used to improve our understanding of the structure and dynamics of the galaxy.

2037: Launch of the ESA's Jupiter Icy Moons Mission (JIMM), which is designed to study the ice giants of the outer solar system. The data from this mission is used to improve our understanding of the properties of the ice giants and to study the effects of climate change.

2038: Launch of the ESA's Hera satellite, which is designed to study the dynamics of the Earth's interior. The data from this mission is used to improve our understanding of the Earth's dynamics and to study the effects of climate change.

2039: Launch of the ESA's Gaia-PPM mission, which is designed to provide a detailed map of the positions and distances of stars in the Milky Way galaxy. The data from this mission is used to improve our understanding of the structure and dynamics of the galaxy.

2040: Launch of the ESA's Jupiter Icy Moons Mission (JIMM), which is designed to study the ice giants of the outer solar system. The data from this mission is used to improve our understanding of the properties of the ice giants and to study the effects of climate change.