Understanding Proton Beam Therapy

Karen Kirkby
Professor Proton Therapy Physics
Manchester Academic Health Science
Institute of cancer Sciences, University of Manchester
The Christie NHS Foundation Trust
Outline

• Proton Therapy why now?
• Science underpinning protons
• What we did at Surrey
• What are doing in Manchester
So what is proton beam therapy
What is the most effective cure for cancer?

Patients cured by the major cancer treatment modalities

- Radiotherapy: 40%
- Surgery: 49%
- Chemotherapy: 11%
 - alone
 - with surgery
 - with radiotherapy

Reference
Cancer Services Collaborative 2002
www.nhs.uk/npat
Radiotherapy wish list

- Conform radiation to tumour
- Maximum damage to tumour
- Minimum damage to surrounding healthy tissue
The Bragg Peak

![Bragg Peak Diagram]

Effective Relative Dose for different types of radiation (Photon, Carbon, Protons). The diagram shows the depth in tissue (cm) with prescribed dose in tumor, indicating the Bragg peak effect.
Advances in Radiotherapy

- Development constrained by
 - Imaging
 - Computing

- Full potential only realised from ≈ 1990s
- Since then things have advanced very rapidly
Advances in Imaging

1970s 1980s 2003 2010
Interaction of radiation with cells

Consequences for the cell:

- **repair**
- **viable cell**
- **mis-repair**
- **not repaired**
- **cancer**
- **mutation**
- **cell death**
Proton/ Hadron therapy

- Understanding how ion beams interact with living cells
- Through direct interaction with DNA
- Non targeted effects
Measuring radiobiological effect

• So how do we study the effects of radiation on biological systems

• Typically, radiobiological effect is measured by irradiating and analysing cell populations.
Rationale for broadfield and microbeams

Average of one particle per cell

- ‘Broad-field’ irradiation
- Microbeam irradiation

Exactly one particle per cell

- For charged particles, delivering an average of one particle per cell
 - ≡ 37% receive no particles,
 - ≡ 37% receive 1 particle
 - ≡ 26% >1
Applications of Microbeams

Every cell

Single cell

Sub-cellular region
What do we need to build a microbeam?

- Biological model system
- Microscopy imaging system
- Beam Line
- Accelerator
- Software

PATIENCE

PEOPLE

MONEY

And.......
And a building to house it
We need to see what we are irradiating

- Detector
- Microscope/detector
- CCD camera
- Stage
- Computer control
- Particle microbeam
- Shutter
- Cell finding
- Cell positioning

(Flowchart showing the connection between the components.)
OPTICAL DETECTION END-STATION

- environment control
- objectives
- wide throat stage
- focus
- widefield trans-illumination
- beam focusing and scanning
What can we use it for?

- Radiation and cytotoxic drugs or nanoparticles
- Non-targetted effects
- Genomics & sub-cellular targeting
- Environmental control
- DNA repair kinetics
- Modelling effects of radiotherapy
PBT Centre: Designated Research Space
Proton Therapy in Manchester

Proton Therapy

Christie

University

Manchester Cancer Research Centre
Proton Therapy Research Pipeline

- Basic Research
- Pre-clinical Research
- Translational Research
- Clinical trials
- Patient Benefit

Underlying basic research; physics, biology, chemistry
Proton Therapy Research Pipeline

- **Basic research**
- **Pre-clinical research**
- **Translational research**
- **Clinical Trials**
- **Patient benefit**

Application of basic research to address PBT research questions
Proton Therapy Research Pipeline

- Basic Research
- Pre-clinical Research
- Translational Research
- Clinical Trials
- Patient benefit

Application of basic and preclinical research to address real clinical issues
Proton Therapy Research Pipeline

- Basic Research
- Pre-clinical research
- Translational research
- Clinical trials
- Patient benefit
Proton Therapy Research Pipeline

- **Basic research**
 - Underlying basic research; physics, biology, chemistry (TRL 1-2)
- **Pre-clinical research**
 - Application of basic research to address PBT research questions (TRL 2-4)
- **Translational research**
 - Application of basic and preclinical research to address real clinical issues (TRL 4-6)
- **Clinical trials**
 - Clinical trials (TRL 5-9)
- **Patient benefit**
 - Patient benefit and quality of life
Research

Clinical trials

Proton therapy

In Manchester

Pre-clinical radiobiology
Pre-clinical radiotherapy
Clinical trials
Translational technical radiotherapy
Clinical Oncology and translational research
Translational radiobiology
Data analysis, big data, data theragnostics
Multi-scale Mathematical modelling

The Christie NHS Foundation Trust
Designated research room
Scope of research room
Use of the research room

- Research pipeline
- Technical developments of Proton Therapy required
- Radiobiology research
- Accelerator and imaging development
- Complement clinical research
- National Service – one of two centres in the UK

Potential lost opportunity that can not be revisited
Ability to deliver high quality research